(\pm) -Phoracantholid I *via* the Caesium Carbonate-promoted Ring Closure of the Methanesulphonate of 9-Hydroxydecanoic Acid

Michel Barbier

Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette, France

 (\pm) -Phoracantholid I, a product from the secretion of the longicorn *Phoracantha synonyma*, has been synthesised *via* the caesium carbonate treatment of the methanesulphonate of 9-hydroxydecanoic acid, prepared from the easily accessible 9-oxo-derivative.

Phoracantholid I (decan-9-olide) (1) is a substance previously isolated from the metasternal secretion of the eucalyptus longicorn *Phoracantha synonyma*.¹ A one-step synthesis of 9-oxodecanoic acid (2) has been recently reported,² and we hoped that the caesium carbonate-promoted cyclization of the methanesulphonate of the corresponding hydroxy-acid (3),

would provide a convenient short synthesis of this lactone (1). The hydroxy-acid (3) can also be prepared by reduction (NaBH₄, H₂-Pt) of (*E*)-9-oxodec-2-enoic acid (4), the queen substance of the honeybee queen *Apis mellifica*.³

The methanesulphonate of (3) was prepared from (2) (NaBH₄, MeSO₂Cl) and treated with Cs_2CO_3-N,N -dimethyl-

(1)

(2) MeCO[CH₂]₇CO₂H
(3) MeCH(OH)[CH₂]₇CO₂H
(4) MeCO[CH₂]₅CH-CHCO₂H
(5) HO[CH₂]₇CH CHCO₂H
(6) HO[CH₂]₉CO₂H

formamide (DMF) for 4 days at 40 °C,¹ leading to a total yield of cyclized products of *ca*. 75%. T.l.c. on silica (Schleicher–Schüll, fluorescent, developing with hexane–ethyl acetate, 9:1), then 50% H₂SO₄ spray on lateral spots, 100 °C, or u.v. absorption for the conjugated compounds, allowed the separation of (1) R_f 0.60 (45%), also the dilactide, R_f 0.55 (m.s.; yield 25%), and the trilactide (5%). The lactone (1) is a colourless oil, m.s. 170 (M^+), n.m.r. (400 MHz, CDCl₃) δ 1.38 (3H, d, CH₃–CH–O–) and 5.00 (1H, m, J6 Hz, CH₃–CH–O–). Using K₂CO₃ instead of Cs₂CO₃ gives a final yield of cyclization products of 70% but this included only 24% of the expected lactone (1).

We previously reported the PPh₃-ethylazodicarboxylate cyclization of royal jelly acid, (*E*)-10-hydroxydec-2-enoic acid (**5**), in which the corresponding dilactide is the main product and the lactone is formed in trace amounts (determined by mass spectroscopy).⁵ We tried to apply the Cs₂CO₃-DMF treatment to the methanesulphonate of (**5**) but were unable to get more than 7% of the lactone, together with the dilactide (53%) and the other oligomers. It seems that the α,β unsaturated carboxy-function opposes the lactonization in such compounds. This conclusion was emphasised by the fact that the α , β -unsaturated hydroxy-acid obtained through NaBH₄ reduction of queen substance (4), gave similar results using this method (only 6% of the lactone, as determined from m.s.).

The Cs₂CO₃-DMF treatment of the methanesulphonate of (6) (10-hydroxydecanoic acid) obtained from (5) (H₂-Pt) gave (t.l.c., m.s.) a mixture of the lactone (R_f 0.70) and the dilactide (R_f 0.65) in the ratio 7:3.

As C₉ and C₁₀ caesium ω -halogenoalkanoates do not give lactones under such conditions^{4,6} our observations above may be related to the particular reactivity of the methanesulphonate group.

Thanks are due to Mrs. C. Fontaine for the n.m.r. determination on a Bruker WM 400 spectrometer and to Drs. B. C. Das and C. Girard for mass spectrometry on an AEI MS 50.

Received, 25th February 1982; Com. 205

References

- B. P. Moore and W. V. Brown, Aust. J. Chem., 1976, 29, 1365;
 T. Wakamatsu, K. Akasaka, and Y. Ban, Tetrahedron Lett., 1977, 2755; J. Org. Chem., 1979, 44, 2008; H. Gerlach, P. Künzler, and K. Oertle, Helv. Chim. Acta, 1978, 61, 3075;
 J. R. Mahajan and H. C. de Araujo, Synthesis, 1981, 49.
- 2 A. Citterio and E. Vismara, Synthesis, 1980, 751
- R. K. Callow and R. C. Johnston, *Bee World*, 1960, 41, 152;
 M. Barbier and E. Lederer, *C.R. Acad. Sci.*, 1960, 250, 4467;
 M. Barbier, E. Lederer, and T. Nomura, *ibid.*, 251, 1133.
- 4 W. H. Kruizinga and R. M. Kellogg, J. Am. Chem. Soc., 1981, 103, 5183.
- 5 M. Barbier, Helv. Chim. Acta, 1981, 64, 1407.
- 6 C. Galli and L. Mandolini, J. Chem. Soc., Chem. Commun., 1982, 251.